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LaPlace Transforms as Present Value Rules: 
A Note 

STEPHEN A. BUSER* 

ABSTRACT 

The present value equation in finance is shown to be equivalent to the Laplace 
transformation in mathematics. Based on this observation, the list of known analytic 
solutions for the present value problem is increased from a handful to more than one 
hundred. General properties of the Laplace transform are examined as well in light of 
the newly discovered significance for finance. 

ONE OF THE RECURRING problems in finance is to find the present value of a 
given cash flow C(t) for a given rate of discount r. 

00 

V(r) = e`rtC(t)dt. (1) 

In standard mathematical jargon, the present value integral, V(r), is referred to 
as the Laplace transform of the cash flow, C(t). Apart from semantics, there is a 
substantial practical gain from identifying the generic name of the present value 
problem: only a handful of analytic solutions have been found for present value 
problems per se. Yet, thanks to Laplace (1749-1827) and countless others who 
have followed in his work, more than a hundred solutions exist for the Laplace 
transformation.' 

The purpose of this note is to alert the profession to this rich source of present 
value rules and to illustrate the enhanced problem-solving capabilities of the 
expanded bag of tricks. In particular, it is shown that assets with cyclical cash 
flows can have surprisingly simple representations. Present value rules for each 
of the elementary mathematical functions are identified in Section I. In Section 
II, general properties of the Laplace transformation are presented and discussed. 
These properties are then used in Section III to confirm the elementary rules 
and to show in Section IV how the simple rules can be combined to approximate 
the present value of complex cash flows. 

I. Present Value Rules for the Elementary Functions 

Table I is offered as specific motivation for a closer look at the Laplace transfor- 
mation. Lines 1 and 2 list the customary expressions for the present value of the 
consol, or level payment stream, and the geometric growth stream, respectively. 

* The Ohio State University. 
' For an extensive list of rules, see Murray R. Spiegel, Laplace Transforms, NY: McGraw-Hill, 

1965. 
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Table I 

Laplace Transforms/Present Values for 
the Elementary Functions 

Cash Flow C(t) Present Value V(r) 

1. Constant (1) llr 
2. Geometric (eat) 1/(r - a) for a< r 
3. Arithmetic (t) llr2 
4. Power (tn) n!/rn+1 
5. Sine [sin(t)] 1/(1 + r2) 
6. Cosine [cos(t)] r/(1 + r2) 

Line 3 shows that an arithmetic growth stream is equivalent to receiving one 
consol per period in perpetuity (a consol of consols). The rule is not widely used 
but can be found in many standard sources for present value solutions. It is 
doubtful, however, that even a specialist would recognize the remaining expres- 
sions for even the simplest of cash flows. For example, the rule for the present 
value of a power sequence (line 4) is not generally known even though it is a 
natural extension of rules 1 and 3 (special cases n = 0 and n = 1, respectively). 
In a similar vein, future generations of security analysts may find it surprising 
that present value rules for the periodic functions would have escaped attention 
for so many years despite the profession's general concern for the cyclical 
behavior of asset prices. Lines 5 and 6 show that present value rules for 
elementary periodic cash flows are neither less tractible nor more cumbersome 
than present value rules for elementary noncyclical cash flows. On the contrary, 
the rules are strikingly simple. At moderate rates of discount, the present value 
of the standard sine cash flow (unit amplitude) is approximately $1. The present 
value of the standard cosine cash flow is approximately equal to the rate of 
discount. 

II. General Properties of the Laplace Transformation 

Beyond the simple intuitive appeal of each of the rules in Table I, the collection 
is interesting in the sense that all six expressions can be derived from a single 
property of the Laplace transformation. That unifying rule is identified in Table 
II (line 8) along with other properties of the Laplace transformation that appear 
to have particular significance for finance. 

Line 1 states that the Laplace transformation is a linear operator. Line 2 shows 
that scaling a cash flow by a geometric growth term is equivalent to a correspond- 
ing reduction in the rate of discount. Both rules are readily apparent from the 
definition of the Laplace transformation as the integral of an exponentially 
weighted function [Equation (1)]. 

Line 3 shows the effect of scaling a cash flow by an arithmetic growth term. 
Readers who are familiar with the Hicks/Macaulay measure of duration (time- 
weighted present value) should recognize the link to interest rate elasticity that 
is implied by this rule. To confirm the result, recall that the derivative of the 
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Table II 

The Algebra of Laplace Transforms/Present Values* 
Cash Flow Transform 

1. Linearity aC(t) + bD(t) aV(r) + bW(r) 
2. Geometric scaling ea'C(t) V(r - a) for a < r 
3. Multiplication by t tC(t) -V'(r) 

4. Division by t C(t)/t o V(x) dx 

5. Time shift C(a + bt) for t 2 a/b enz/b(l/b) V(r/b) 
O for t < a/b 

6. Point flow C(t) for t = k ertC(k) 
O for t # k 

7. Finite life C(t) for t c k V(r) - e'W(r) 
O for t > k 

with C(t) = D(t - k) 
8. Time derivative C'(t) rV(r) - C(O) 
9. Integral Ct V(r)/r 

C(x) dx 

* In the table, a and b are arbitrary constants and V(r) and W(r) are the transforms 
of the cash flows C(t) and D(t), respectively. 

exponential function, exp(-rt), taken with respect to r, is simply the function 
itself scaled by -t. 

The rule for division by the time index (line 4) is a corollary to line 3 that 
follows from Leibnitz's rule for the derivative of a definite integral taken with 
respect to its lower bound. 

Line 5 applies the change-of-variable theorem of integral calculus and is 
particularly useful for evaluating cash flows with altered time schedules (accel- 
erated or deferred.) In addition, rule 5 can be used in conjunction with the trivial 
rule for the transform of a single payment (line 6) to evaluate flows with finite 
lives as indicated on line 7. 

Line 8 identifies a fundamental linear relationship between Laplace transforms 
for cash flows and their time derivatives. This property is worthy of special note 
for two reasons. First, the proof is nontrivial, and that alone sets it apart from 
the other rules in Table II. Second, the property is a generalization of the 
customary procedure for solving the present value equation by applying the rule 
for summing (or integrating) geometric series. To confirm the time-derivative 
property, note that integration by parts implies that: 

ertC(t) = -rf e-tC(t)dt + e-rtC'(t)dt. (2) 

Rule 8 follows immediately from Equation (2) when we evaluate the integral over 
the relevant range for the Laplace transform [0, co] and impose a standard 
assumption in present value problems that the marginal present value of the 
cash flow, exp(-rt)C(t), vanishes as t gets large. 

Line 9 is a corollary to property 8 that follows from Leibnitz's rule for the 
derivative of a definite integral taken with respect to its upper bound. 
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III. Applications of the Time-Derivative Property 

To confirm that each of the present value rules in Table I can be derived from 
property 11.8, it is convenient to introduce a notational form for the Laplace 
transformation that allows us to keep track of the underlying cash flow: 

L[C(t)] = V(r). (3) 

With this notation, we can restate the time-derivative property as: 

L[C(t)] = C(O)/r + L[C'(t)]/r. (4) 

The rule for the consol (1.1) follows trivially from Equation (4) and the 
observation that for C(t) = 1, we have C(O) = 1 and C'(t) = 0. In turn, the consol 
rule provides an interesting "myopic" interpretation of the time-derivative rule 
(line 11.8): each asset is valued as if its cash flow were projected at a constant 
level equal to the current rate plus the present value of the time derivative of the 
cash flow. 

In the case of the geometric cash flow (line I.2), we have C(t) = exp(at), so 
that C(O) = 1 and C'(t) = aC(t). Hence, by virtue of property II.8, we have: 

L[exp(at)] = llr + aL[exp(at)]/r, (5) 

and rule 1.2 follows immediately. Alternatively, we could combine the consol rule 
with property 11.2 to establish the rule for geometric growth. 

To derive the rule for arithmetic growth (1.3), we could combine the consol 
rule (1.1) and property 11.3. Or, we can apply property 11.8 and note that for C(t) 
= t, we have C(0) = 0 and C'(t) = 1. More generally, for any power sequence 
C(t) = tn, we have C(O) = 0 and C'(t) = ntn-1 so that: 

L[tn] = (n/r)L[tn-1]. (6) 

By repeating this observation n times, we can establish the general rule for the 
present value of any power cash flow (1.4). Alternatively, we can confirm the 
result by repeated applications of rule 11.3. 

To derive present value rules for the simple periodic cash flows (lines 1.5 and 
1.6), we apply property 11.8 to both the sine and cosine functions; i.e., because 
sin(O) = 0, cos(O) = 1, sin'(t) = cos(t), and cos'(t) = -sin(t), we have: 

L[sin(t)] = L[cos(t)]/r, (7) 

and 

L[cos(t)] = lr - L[sin(t)]/r. (8) 

We can solve the two equation system by substituting into Equation (7) on the 
basis of Equation (8) and the desired results follow immediately. 

IV. Present Value Rules in Combination 

As an illustration of the potential combinations of the rules in Table I and the 
properties in Table II, consider the case of the lowly k-period annuity. Real world 
counterparts include fixed-rate mortgages, and the coupon portion of most bond 
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returns, among numerous other examples. We can apply property 11.7 with C(t) 
C(t - k) = 1, so that W(r) = V(r) = 1/r, and familiar rule follows immediately. 

V(r) = (1 - erk)(l/r). (9) 

This particular combination of rules represents the finite level payment stream 
as the difference between two consols, one with payments beginning today and 
one with payments deferred for k periods. (The second consol represents the 
portion of the first consol that extends beyond the life of the annuity). 

As a second application, recall that many cyclical patterns can be approximated 
as weighted sums of leading and lagging sine waves with differing amplitudes 
and frequencies. 

C(t) = Xjaisin(bi + cit). (10) 

By combining rule 5 from Table I with rules 1 and 5 from Table II, we can 
represent the present value of the complex cyclical cash flow as: 

V(r) = aexp(ra/b)cic + r). (11) 

Note that, in this example, there is no uncertainty about the future cash flow (or 
about the future rate of discount). Nevertheless, variation in the cash flow, as 
measured by the amplitude (ai) and frequency (bi) of each sine wave, can have a 
substantial impact on the present value of the cash flow. In particular, present 
value is an increasing function of frequency at very low values (ci < 1) but 
decreases with frequency at higher values. 

V. Conclusions 

A complete set of combinations and permutations of the rules in Table I and the 
properties in Table II would obviously be quite lengthy. Yet even that list would 
be short in relation to the extensive tables of Laplace transforms that have been 
compiled over the years. Many of the individual entries in these lists are of 
dubious practical value in finance. Nevertheless, the collection of rules could 
serve as a valuable reference. At the very least, security analysts should be aware 
that a broader interpretation exists for the present value problem, and that 
extensive lists of analytic solutions have been found for the generalized problem. 
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