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Abstract

This module describes the use of the Laplace transform in �nding solutions to di�erential equations.

1 Di�erential Equations

It is often useful to describe systems using equations involving the rate of change in some quantity through
di�erential equations. Recall that one important subclass of di�erential equations, linear constant coe�cient
ordinary di�erential equations, takes the form

Ay (t) = x (t) (1)

where A is a di�erential operator of the form

A = an
dn

dtn
+ an−1

dn−1

dtn−1
+ ...+ a1

d

dt
+ a0. (2)

The di�erential equation in (1) would describe some system modeled by A with an input forcing function
x (t) that produces an output solution signal y (t). However, the unilateral Laplace transform permits a
solution for initial value problems to be found in what is usually a much simpler method. Speci�cally, it
greatly simpli�es the procedure for nonhomogeneous di�erential equations.

2 General Formulas for the Di�erential Equation

As stated brie�y in the de�nition above, a di�erential equation is a very useful tool in describing and
calculating the change in an output of a system described by the formula for a given input. The key
property of the di�erential equation is its ability to help easily �nd the transform, H (s), of a system. In
the following two subsections, we will look at the general form of the di�erential equation and the general
conversion to a Laplace-transform directly from the di�erential equation.

2.1 Conversion to Laplace-Transform

Using the de�nition, , we can easily generalize the transfer function, H (s), for any di�erential equa-
tion. Below are the steps taken to convert any di�erential equation into its transfer function, i.e. Laplace-
transform. The �rst step involves taking the Fourier Transform1 of all the terms in . Then we use the
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1"Derivation of the Fourier Transform" <http://cnx.org/content/m0046/latest/>
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linearity property to pull the transform inside the summation and the time-shifting property of the Laplace-
transform to change the time-shifting terms to exponentials. Once this is done, we arrive at the following
equation: a0 = 1.

Y (s) = −

(
N∑

k=1

(
akY (s) s−k

))
+

M∑
k=0

(
bkX (s) s−k

)
(3)

H (s) = Y (s)
X(s)

=
PM

k=0(bks−k)
1+

PN
k=1(aks−k)

(4)

2.2 Conversion to Frequency Response

Once the Laplace-transform has been calculated from the di�erential equation, we can go one step further to
de�ne the frequency response of the system, or �lter, that is being represented by the di�erential equation.

note: Remember that the reason we are dealing with these formulas is to be able to aid us in
�lter design. A LCCDE is one of the easiest ways to represent FIR �lters. By being able to �nd
the frequency response, we will be able to look at the basic properties of any �lter represented by
a simple LCCDE.

Below is the general formula for the frequency response of a Laplace-transform. The conversion is simply a
matter of taking the Laplace-transform formula, H (s), and replacing every instance of s with eiw.

H (w) = H (s) |s,s=eiw

=
PM

k=0(bke−(iwk))PN
k=0(ake−(iwk))

(5)

Once you understand the derivation of this formula, look at the module concerning Filter Design from the
Laplace-Transform2 for a look into how all of these ideas of the Laplace-transform3, Di�erential Equation,
and Pole/Zero Plots4 play a role in �lter design.

3 Solving a LCCDE

In order for a linear constant-coe�cient di�erence equation to be useful in analyzing a LTI system, we must
be able to �nd the systems output based upon a known input, x (t), and a set of initial conditions. Two
common methods exist for solving a LCCDE: the direct method and the indirect method, the latter
being based on the Laplace-transform. Below we will brie�y discuss the formulas for solving a LCCDE using
each of these methods.

3.1 Direct Method

The �nal solution to the output based on the direct method is the sum of two parts, expressed in the following
equation:

y (t) = yh (t) + yp (t) (6)

The �rst part, yh (t), is referred to as the homogeneous solution and the second part, yh (t), is referred
to as particular solution. The following method is very similar to that used to solve many di�erential
equations, so if you have taken a di�erential calculus course or used di�erential equations before then this
should seem very familiar.

2"Discrete Time Filter Design" <http://cnx.org/content/m10548/latest/>
3"The Laplace Transform" <http://cnx.org/content/m10110/latest/>
4"Understanding Pole/Zero Plots on the Z-Plane" <http://cnx.org/content/m10556/latest/>
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3.1.1 Homogeneous Solution

We begin by assuming that the input is zero, x (t) = 0. Now we simply need to solve the homogeneous
di�erential equation:

N∑
k=0

(aky (t− k)) = 0 (7)

In order to solve this, we will make the assumption that the solution is in the form of an exponential. We
will use lambda, λ, to represent our exponential terms. We now have to solve the following equation:

N∑
k=0

(
akλ

t−k
)

= 0 (8)

We can expand this equation out and factor out all of the lambda terms. This will give us a large polynomial
in parenthesis, which is referred to as the characteristic polynomial. The roots of this polynomial will
be the key to solving the homogeneous equation. If there are all distinct roots, then the general solution to
the equation will be as follows:

yh (t) = C1(λ1)
t + C2(λ2)

t + · · ·+ CN (λN )t
(9)

However, if the characteristic equation contains multiple roots then the above general solution will be slightly
di�erent. Below we have the modi�ed version for an equation where λ1 has K multiple roots:

yh (t) = C1(λ1)
t + C1t(λ1)

t + C1t
2(λ1)

t + · · ·+ C1t
K−1(λ1)

t + C2(λ2)
t + · · ·+ CN (λN )t

(10)

3.1.2 Particular Solution

The particular solution, yp (t), will be any solution that will solve the general di�erential equation:

N∑
k=0

(akyp (t− k)) =
M∑

k=0

(bkx (t− k)) (11)

In order to solve, our guess for the solution to yp (t) will take on the form of the input, x (t). After guessing
at a solution to the above equation involving the particular solution, one only needs to plug the solution into
the di�erential equation and solve it out.

3.2 Indirect Method

The indirect method utilizes the relationship between the di�erential equation and the Laplace-transform,
discussed earlier, to �nd a solution. The basic idea is to convert the di�erential equation into a Laplace-
transform, as described above (Section 2.1: Conversion to Laplace-Transform), to get the resulting output,
Y (s). Then by inverse transforming this and using partial-fraction expansion, we can arrive at the solution.

L{ d
dt
y (t)} = sY (s)− y (0) (12)

This can be interatively extended to an arbitrary order derivative as in Equation (13).

L{ d
n

dtn
y (t)} = snY (s)−

n−1∑
m=0

sn−m−1y(m) (0) (13)
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Now, the Laplace transform of each side of the di�erential equation can be taken

L{
n∑

k=0

ak
dk

dtk
y (t)} = L{x (t)} (14)

which by linearity results in

n∑
k=0

akL{
dk

dtk
y (t)} = L{x (t)} (15)

and by di�erentiation properties in

n∑
k=0

ak

(
skL{y (t)} −

k−1∑
m=0

sk−m−1y(m) (0)

)
= L{x (t)}. (16)

Rearranging terms to isolate the Laplace transform of the output,

L{y (t)} =
L{x (t)}+

∑n
k=0

∑k−1
m=0 aks

k−m−1y(m) (0)∑n
k=0 aksk

. (17)

Thus, it is found that

Y (s) =
X (s) +

∑n
k=0

∑k−1
m=0 aks

k−m−1y(m) (0)∑n
k=0 aksk

. (18)

In order to �nd the output, it only remains to �nd the Laplace transform X (s) of the input, substitute the
initial conditions, and compute the inverse Laplace transform of the result. Partial fraction expansions are
often required for this last step. This may sound daunting while looking at Equation (18), but it is often
easy in practice, especially for low order di�erential equations. Equation (18) can also be used to determine
the transfer function and frequency response.

As an example, consider the di�erential equation

d2

dt2
y (t) + 4

d

dt
y (t) + 3y (t) = cos (t) (19)

with the initial conditions y' (0) = 1 and y (0) = 0 Using the method described above, the Laplace transform
of the solution y (t) is given by

Y (s) =
s

(s2 + 1) (s+ 1) (s+ 3)
+

1
(s+ 1) (s+ 3)

. (20)

Performing a partial fraction decomposition, this also equals

Y (s) = .25
1

s+ 1
− .35

1
s+ 3

+ .1
s

s2 + 1
+ .2

1
s2 + 1

. (21)

Computing the inverse Laplace transform,

y (t) =
(
.25e−t − .35e−3t + .1cos (t) + .2sin (t)

)
u (t) . (22)

One can check that this satis�es that this satis�es both the di�erential equation and the initial conditions.
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4 Summary

One of the most important concepts of DSP is to be able to properly represent the input/output relation-
ship to a given LTI system. A linear constant-coe�cient di�erence equation (LCCDE) serves as a way
to express just this relationship in a discrete-time system. Writing the sequence of inputs and outputs,
which represent the characteristics of the LTI system, as a di�erence equation helps in understanding and
manipulating a system.

http://cnx.org/content/m34510/1.3/


